CT Guided Contouring:
“Challenges and Pitfalls”

Dr Umesh Mahantshetty, Associate Professor,
GYN & Urology Disease Management Group (DMG) Member
Tata Memorial Hospital,
Mumbai, India

GYN GEC – ESTRO NETWORK MEMBER AND FACULTY
Vienna Applicator

- Applicators
- Imaging
- Planning systems

w = 7 cm
h = 5 cm
t = 4 cm

“GOLD STANDARD”
Why CT for “At Brachy Contouring”

Pros & Cons of CT Imaging: Alina

- Brachytherapy - Conventionally Point Based
- GEC-ESTRO Recommendations - 2005
 - Defined target and Organ at Risk
 - MRI – Imaging of choice

Then Why CT?

- CT Imaging: Gold STD for RT planning!
- Vast experience with CT based contouring!
- Wide acceptability due to its use in XRT!
- Availability: CT Vs MR in RT dept.
CT Guided Contouring
Pre-Requisites: Do’s and Don’ts

- Do not use the metallic applicators made of stainless steels
- Do not use contrast agents in foley’s bulb / rectum / sigmoid
- Do not use radio-opaque gauze / rectal separator (SS) for vaginal packing
- Do not use dummies meant for X-rays based planning

- CT / MR Compatible Brachy Applicators
- Use saline/ water as contrast in foley’s bulb & dilute urografin for rectum/ sigmoid/ bladder
- CT protocol: 2-3 mm slice axial sections with / without IV Contrast
- Dummies : Copper / low density metal
- Proper Documentation and mapping: Clinical / Imaging
CT Artifacts
Applicators, Folley’s catheter, Dummies, Rectal retractors
CT Guided Contouring

• Delineation Target & OARs

• Dosimetric Implications
 – Optimized plans Vs Un-optimized plans

• Logistical Alternatives
 – Single fraction MRI
 – Pre Brachy MRI
 – Evidence
 – Learning Curve etc...
Delineation of Target on CT

- Experience of MR Based Approach: Mandatory

- Target at brachytherapy
 - GTV: poor visualization of residual tumor on CT
 - HRCTV: Clinical Drawing at Diagnosis and Brachy + CT imaging findings
 - IRCTV: margins to HR-CTV

- HR-CTV: Practical & feasible contour possible on CT Imaging

- Defined conceptually as
 - GTV-B + Whole of Cervix
 - With presumed extensions at brachy in:
 - Parametrium
 - Endocervical
 - Vagina
HRCTV Delineation On CT

A) Whole Cervix

- Inferior extent
 - At superior level of Ring/Ovoid
HRCTV Delineation On CT

A) Whole Cervix

- Inferior extent
- Superior extent
 - Level of uterine vessels first abut cervical tissue (need i/v contrast)
 - Point of volume expansion
 - Point of uterine cavity appearance
 - Conical cervical apex or the isthmus
HRCTV Delineation On CT

A) Whole Cervix
 - Inferior extent
 - Superior extent
 - Lateral: clinical assessment / MR assessment
 • CT poor estimate of lateral cervical boundary & Para extension
 • Clinical / MR imaging findings at Pre Rx and at Brachy

B) Extensions: Clinical examination + CT findings
 - Parametrium + Endocervical + Vaginal Disease
Abnormal Parametrium???
B) Extensions: Clinical examination + CT findings

- Parametrium: over-estimated
- Endocervical: under-estimated
- Vagina: no reports

- none can be truly estimated on CT
- Best clinical examinations defined delineation or may be assisted with pre brachy MRI
Dimensions Different

DVH No difference??!??!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HR-CTV_MRI</th>
<th>HR-CTV_CT</th>
<th>HR-CTV_CT_Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td>4.6 ± 1.5</td>
<td>4.4 ± 1.5</td>
<td>4.2 ± 1.0</td>
</tr>
<tr>
<td>Width at Point A (cm)</td>
<td>4.5 ± 1.0</td>
<td>5.1 ± 1.8</td>
<td>5.5 ± 1.3 (p = 0.05)*</td>
</tr>
<tr>
<td>Thickness at Point A (cm)</td>
<td>3.6 ± 0.6</td>
<td>3.5 ± 1.1</td>
<td>3.8 ± 1.3</td>
</tr>
<tr>
<td>Volume (cm³)</td>
<td>47.3 ± 28.5</td>
<td>43.3 ± 20.5</td>
<td>47.6 ± 23</td>
</tr>
<tr>
<td>V_100 (%)</td>
<td>96 ± 4</td>
<td>91 ± 11</td>
<td>86 ± 9 (p = 0.01)*</td>
</tr>
<tr>
<td>D_100 (Gy)</td>
<td>5.4 ± 1.5</td>
<td>4.1 ± 1.7 (p = 0.03)*</td>
<td>3.4 ± 1.0 (p < 0.01)*</td>
</tr>
<tr>
<td>D_90 (Gy)</td>
<td>8.7 ± 1.5</td>
<td>7.6 ± 1.9</td>
<td>6.7 ± 1.6 (p < 0.01)*</td>
</tr>
</tbody>
</table>

Table 2. Comparison of HR-CTV dimensions and dose parameters (calculated using EQD2) between MRI and CT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HR-CTV_MRI</th>
<th>HR-CTV_CT</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length sagittal, cm</td>
<td>2.7 (0.5)</td>
<td>2.2 (0.8)</td>
<td>0.006*</td>
</tr>
<tr>
<td>Length coronal, cm</td>
<td>3.7 (0.7)</td>
<td>4.5 (0.9)</td>
<td>0.004*</td>
</tr>
<tr>
<td>Length axial, cm</td>
<td>3.0 (0.6)</td>
<td>3.3 (0.8)</td>
<td>0.157</td>
</tr>
<tr>
<td>D_100 (EQD2)</td>
<td>77.2 (2.3)</td>
<td>75.9 (1.5)</td>
<td>0.182</td>
</tr>
<tr>
<td>D_90 (EQD2)</td>
<td>81.9 (2.5)</td>
<td>80.4 (2.0)</td>
<td>0.110</td>
</tr>
<tr>
<td>PtA dose; EQD2, Gy</td>
<td>82.9 (3.6); 93.2 (2.1)</td>
<td>82.0 (3.5); 93.3 (2.8)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 1. Mean values and comparison of volume and dose parameters among high-risk clinical target volume resonance imaging, computed tomography, and after formulating standardized computed tomography.

Viswanathan et al IJROBP 2007

Eskander et al IJGC 2010

Krishnatry et al JJCO 2012
Overall Volume: HRCTV

- No significant Difference in all reports
- Over-estimation in one dimension compensates for underestimation in other direction
 - Implication
 - Dosimetric: none
 - Clinical: not known

Under estimation of
- Height
- Thickness at Point A

Over-estimation of
- Width
- Maximum Thickness

Compensated Total Volume
Dosimetric Implications CT /MRI

Optimized plans Vs Un-optimized plans Comparison

Table 1. Mean values and comparison of volume and dose parameters among high-risk clinical target volume obtained on magnetic resonance imaging, computed tomography, and after formulating standardized computed tomography contours

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HR-CTV<sub>MRI</sub></th>
<th>HR-CTV<sub>CT</sub></th>
<th>HR-CTV<sub>CTSMI</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td>4.6 ± 1.5</td>
<td>4.4 ± 1.5</td>
<td>4.2 ± 1.0</td>
</tr>
<tr>
<td>Width at Point A (cm)</td>
<td>4.5 ± 1.0</td>
<td>5.1 ± 1.8</td>
<td>5.5 ± 1.3<sub>(p = 0.05)*</sub></td>
</tr>
<tr>
<td>Thickness at Point A (cm)</td>
<td>3.6 ± 0.6</td>
<td>3.5 ± 1.1</td>
<td>3.8 ± 1.3</td>
</tr>
<tr>
<td>Volume (cm<sup>3</sup>)</td>
<td>47.3 ± 28.5</td>
<td>43.3 ± 30.5</td>
<td>47.6 ± 23</td>
</tr>
<tr>
<td>V<sub>100</sub> (%)</td>
<td>96 ± 4</td>
<td>91 ± 11</td>
<td>86 ± 9<sub>(p = 0.01)*</sub></td>
</tr>
<tr>
<td>D<sub>100</sub> (Gy)</td>
<td>5.4 ± 1.5</td>
<td>4.1 ± 1.7<sub>(p = 0.03)*</sub></td>
<td>3.4 ± 1.0<sub>(p < 0.01)*</sub></td>
</tr>
<tr>
<td>D<sub>90</sub> (Gy)</td>
<td>8.7 ± 1.5</td>
<td>7.6 ± 1.9</td>
<td>6.7 ± 1.6<sub>(p < 0.01)*</sub></td>
</tr>
</tbody>
</table>

Viswanathan: optimized to HRCTV plans

- No difference in small series of patient
- May have importance in large series or individual patient data
- Especially when two HRCTV volume dimensions not comparable on CT & MR

Table 2. HR-CTV and IR-CTV DVH analysis

<table>
<thead>
<tr>
<th></th>
<th>MRI</th>
<th>CT</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR-CTV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>100</sub> (%)</td>
<td>90.57%</td>
<td>91.16%</td>
<td>0.849</td>
</tr>
<tr>
<td>D<sub>100</sub> (Gy)</td>
<td>6.57 ± 3.86</td>
<td>5.07 ± 1.79</td>
<td>0.148</td>
</tr>
<tr>
<td>D<sub>90</sub> (Gy)</td>
<td>10.6 ± 2.9</td>
<td>10.5 ± 2.9</td>
<td>0.946</td>
</tr>
<tr>
<td>IR-CTV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>100</sub> (%)</td>
<td>77.07%</td>
<td>77.07%</td>
<td>1</td>
</tr>
<tr>
<td>D<sub>100</sub> (Gy)</td>
<td>4.9 ± 11.01</td>
<td>4.6 ± 1.67</td>
<td>0.493</td>
</tr>
<tr>
<td>D<sub>90</sub> (Gy)</td>
<td>7.3 ± 1.93</td>
<td>7.4 ± 1.95</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Krishnatry: Non-optimized STD plans
Summary of Studies

• Small series
• Individual patient data more important than diff in mean
• Comparison of optimized & unoptimized plans
• Compensation effect
OARs Delineation on CT

- All studies show equivalent results for standard OARs
 - Rectum
 - Bladder
 - Sigmoid
Special situations but daily difficulties
Ant/Post boundaries

- At the level of ring/ovoids & cervix difficult boundaries
- Especially in empty Bladder & Rectum
 - Need good information of anatomy, correlation, scroll up & down images
 - MRI image studies can help in experience.
Bowel/ovary/else?
Pre Brachy MRI Vs Clinical contouring

• Similar efficacy results in both type of studies
• Viswanathan et al
 – Showed Pre Brachy MR helped improve HRCTV Volumes
 – Guidelines using pre brachy MRI
• No Other direct comparison
• Clinical based contouring may be more widely usable.
Evidence: few prospective series

• Tan et al, UK (N=28)
 – HRCTV D90 >74 Gy,
 – 7/24 patient modification for OAR dose
 – 2/24 for tumor
 – 3 yr OS: 81%, Pelvic control rate of 96%, overall actuarial risk of serious late morbidity 14%. 20 improvement over conventional cohort.

• Kang et al, Korea (N= 2D/3D=133/97)

<table>
<thead>
<tr>
<th></th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQD2 Tumor</td>
<td>72.3</td>
<td>81.8</td>
</tr>
<tr>
<td>Local Control</td>
<td>91%</td>
<td>97%</td>
</tr>
<tr>
<td>Severe Late rectal Bleeding</td>
<td>13%</td>
<td>2%</td>
</tr>
</tbody>
</table>
MR for selected cases only

- Large disease residual
- No residual disease
- Previous CT planning difficulties
PROSPECTIVE ONGOING STUDY AT TMH

PROTOCOL

Evaluation of CT Imaging Assisted Contouring for Image Based Brachytherapy in Carcinoma of the Uterine Cervix

DATA SET - I
- Pre Rx Clinical Cartoon and Clinical measurements
- Pre Rx MR Pelvis: Primary tumor topography and measurements
- Dimensions of Disease: GTV-D and IRCTV Concept

DATA SET - II
- Clinical Cartoon at 1st Brachytherapy
- CT Imaging: 3mm slices (Contrast)
- MR planning
- GTV, HR-CTV, IR-CTV at 1st Brachytherapy on CT and MR

END POINTS
- Correlation between CT vs MR Based HR-CTV & IR-CTV contouring
- Correlation between CT vs MR Based OAR contouring
Patient: SM
MUM 072

Clinical Drawing
FIGO IIIB

Infiltrative
Exophytic

Cervix

Vagina

Parametria

Rectum or Bladder

At Diagnosis

w = 7 cm
h = 4 cm
t = 5 cm

Vagina Involvement = 2 cm

dd/mm/yy
06.12.2012

umesh
Signature
Screen shots at diagnosis - MUM 072
Clinical Drawing

Infiltrative Exophytic

Cervix

Vagina

Parametria

Rectum or Bladder

At Brachytherapy

\[w = 5 \text{ cm} \]
\[h = 3 \text{ cm} \]
\[t = 3 \text{ cm} \]

Vagina Involvement = 0.5 cm

Patient: SM MUM 072

At Brachytherapy

\[w = 5 \text{ cm} \]
\[h = 3 \text{ cm} \]
\[t = 3 \text{ cm} \]

Vagina Involvement = 0.5 cm

dd/mm/yy
22.02.2013

umesh
Signature
Vagina Involvement = 2 cm

Patient: BD
MUM 073

Clinical Drawing
FIGO IIB

At Diagnosis

w = 8 cm
h = 5 cm
t = 6 cm

Vagina Involvement = 2 cm

Infiltrative Exophytic

Cervix
Vagina
Parametria
Rectum or Bladder

dd/mm/yy
17.12.2012

umesh
Signature
Screen shots at diagnosis - MUM 073

Representative sagittal cut

Representative Cor cut

Representative axial cut
Patient: BD MUM 073

Clinical Drawing

- Infiltrative
- Exophytic

- Cervix
- Vagina
- Parametria
- Rectum or Bladder

At Brachytherapy

- W = 6 cm
- h = 4 cm
- t = 4 cm

Vagina Involvement = 0.5 cm

dd/mm/yy
12.03.2013

umesh
Signature
SUMMARY AND CONCLUSIONS

• MR Based Approach: Gold Standard for IGBT Practice

• CT Guide Contouring is feasible provided
 - MR Based Approach Experience
 - Assisted by at least one MR series
 - Standardized CT Protocol: IV contrast, slice thickness etc.
 - HR-CTV & OAR’s only

• No robust clinical data with the CT Image Guided Brachytherapy

• Ongoing Clinical studies
Acknowledgements:

- Departments of Radiation Oncology & Medical Physics
- Department of Radio-diagnosis
- GYN Disease Management Group TMC
- GYN GEC – ESTRO Research Network