Technological Advances in Gynaecological brachytherapy

Swamidas V Jamema

svjamema@gmail.com
2D BT

- SS, IC, Fletcher
- Orthogonal, Foley, R marker
- X ray markers
- Point A, ICRU points, 60Gy Vol
- Std loading, m optimization
- Dose to point A, OAR points

3D BT

- CT/MR compatible IC+IS
- CT / MR Contrast, B protocol
- Target / OARs
- Applicator commissioning
- Point A, ICRU points
- Std loading, MO, GrO, IP
- GEC ESTRO DVH

Application in OT

Applicators

Imaging

Contouring

Applicator reconstruction

Definition of dose points

Planning

Plan evaluation

Dose delivery
Imaging
Imaging 2D vs 3D

- Great view of the applicator and the source positions
- Can locate some cardinal points on some OARs which act as surrogates
 - Bladder neck - by inserting foley catheter with contrast
 - Vaginal mucosa through radio-opaque gauze
 - Rectum when radio-opaque marker is inserted or by rectal separator inserted in the vagina.
- Target / disease at the Cervix and parametrium
- Uterus
- Rectum
- Bladder
- Sigmoid
- Small bowel
Advances in Imaging leads to the online Tumour regression

Dimopoulos et al. Radiother & Oncol Suppl 2004
Applicator material

- Metal (SS applicators), produces streak artifacts in CT images
- CT/MR compatible applicators made of plastic/titanium-zirconium alloy (non ferromagnetic materials) produce less artifacts
Application technique
Systematic adaptation
Adaptation of the tumor using the applicator

IC

(IC+IS)

IC +IS
(WITH additional NEEDLES)
Contouring

- The Most New concept in the technical advances
- Associated with learning curve
- Largest uncertainty in the whole chain of 3D BT
- **Training / Hands on workshop** is mandatory to remain consistent with the definitions
- Encouraging **Inter observer consistency**.
 - Dimopoulos et al, Lang et al, Nulens et al, Petric et al, Tanderup et al.
Contouring
Treatment planning – point A-STD loading
Point A / target dose

D90 = 65 Gy EQD2

Slide courtesy: C Kirisits/Prof Potter
Point A / target dose

Point A:
- 84 Gy

Point B:
- 93 Gy

D90 = 75 Gy EQD2

Slide courtesy: C Kirisits/Prof Potter
Point A / target dose

D90 = 90 Gy EQD2

Slide courtesy: C Kirisits/Prof. Potter
2D standard plans

K Tanderup et al, Radiother Oncol 2010

10/57 pts
3D optimised plans

K Tanderup et al, Radiother Oncol 2010
Benefit of 3D optimization – Volume

Median volume: 32cc

Violation of OAR constraint

K Tanderup et al, Radiother Oncol 2010
Benefit of 3D optimization – Volume

Optimised

11% needles

64% needles

Violation of OAR constraint

Application of needles
Improvement of local control
MRI based brachytherapy Vienna 98-03

Depending on treatment period
(experience, modification of application)

D90: 81 Gy (98-00) – 90 Gy (01-03)

Late side effects at 3 years

Total G3/4:
98-03: 7/145; 98-00: 6/73;
[93-97: 14/189] 01-03: 1/72

Pötter et al. Radiother Oncol 2007
DOSIMETRIC COMPARISON: Retrospective Vs Prospective Data

<table>
<thead>
<tr>
<th></th>
<th>TMH: RD</th>
<th>TMH: PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRCTV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vol in cc</td>
<td>45.2 ± 15.8</td>
<td>42.5 ± 19.5</td>
</tr>
<tr>
<td>D100</td>
<td>54.1 ± 6.5</td>
<td>65.7 ± 4.6</td>
</tr>
<tr>
<td>D90</td>
<td>70.9 ± 10.6</td>
<td>87.2 ± 4.4</td>
</tr>
<tr>
<td>Avg. Pt A</td>
<td>73.4 ± 4.5</td>
<td>93.1 ± 24.8</td>
</tr>
<tr>
<td>Bladder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICRU Bladder</td>
<td>80.4 ± 34.4</td>
<td>76.4 ± 15.5</td>
</tr>
<tr>
<td>D0.1cc</td>
<td>139.1 ± 54.7</td>
<td>109.6 ± 19.7</td>
</tr>
<tr>
<td>D2cc</td>
<td>93.4 ± 24.6</td>
<td>74.8 ± 7.1</td>
</tr>
<tr>
<td>Rectum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICRU Rectum</td>
<td>63.5 ± 8.1</td>
<td>68 ± 7.9</td>
</tr>
<tr>
<td>D0.1cc</td>
<td>66 ± 9.9</td>
<td>71.5 ± 7.5</td>
</tr>
<tr>
<td>D2cc</td>
<td>57.8 ± 7.7</td>
<td>64.5 ± 5.5</td>
</tr>
<tr>
<td>Sigmoid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0.1cc</td>
<td>109.4 ± 45.2</td>
<td>74 ± 8.6</td>
</tr>
<tr>
<td>D2cc</td>
<td>74.6 ± 19.6</td>
<td>65.2 ± 5.4</td>
</tr>
</tbody>
</table>

Mahantshetty et al, ESTRO 2013; Geneva
Linking of DVH parameter with toxicities

N=141
Clinical Symptoms

N=35
Changes visible with rectoscopy

Georg et al. 2009
Uncertainty budget

<table>
<thead>
<tr>
<th></th>
<th>Geometric variation (mm)</th>
<th>Mean dose variation (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contouring</td>
<td>SD 4 mm experienced*</td>
<td>5-10%**</td>
</tr>
<tr>
<td></td>
<td>? mm in-experienced</td>
<td></td>
</tr>
<tr>
<td>Reconstruction</td>
<td>SD 0.5-2mm***</td>
<td>4-5%****</td>
</tr>
<tr>
<td>Image fusion</td>
<td>? (~1-2mm)</td>
<td>? (~5%)</td>
</tr>
<tr>
<td>DVH calculation</td>
<td></td>
<td>3%‡</td>
</tr>
<tr>
<td>Worst case assumption</td>
<td></td>
<td>Bladder: 5%‖□□□□</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rectum, Sigmoid: ?</td>
</tr>
<tr>
<td>Organ motion</td>
<td></td>
<td>20-25%□□□□□□□□</td>
</tr>
</tbody>
</table>

*Petric et al, RO 2013
**Hellebust et al, RO 2013
***Haack et al, RO, 2009
****K.Tanderup et al, RO, 2008
‖Kirisits et al, RO, 2007
‖‖K.Tanderup et al, RO 2013
‖‖‖N.Nesvacil et al, RO 2013
EMBRACE - International study on MRI-based 3D brachytherapy in locally advanced cervical cancer

A prospective observational multi-centre trial (> 1000 pts)

Vienna
Aarhus
Utrecht
Leiden
Ljubljana
London
Arnhem
Paris (Europe)
Kaposvar
Maastricht
Trondheim
Leeds
Oslo
Amsterdam
Kuopio
Cambridge

(P.N.America)
Pittsburgh
Milwaukee
Edmonton
Iowa
BCU

(Asia)
Mumbai
Chandigarh
ChangMai
Application in OT

SS, IC, Fletcher
Orthogonal, Foley, R marker

X ray markers
Point A, ICRU points, 60Gy Vol
Std loading, m optimization
Dose to point A, OAR points

Contouring
Applicator reconstruction
Definition of dose points

Applicators
Imaging

Target / OARs
Applicator commissioning
Point A, ICRU points
Std loading, MO, GrO, IP

Plan evaluation

CT/MR compatible IC+IS
CT / MR Contrast, B protocol

Dose delivery

GEC ESTRO DVH

Workflow
Intra-application and inter-application variation

<table>
<thead>
<tr>
<th>Center</th>
<th>Bladder Mean</th>
<th>SD</th>
<th>Rectum Mean</th>
<th>SD</th>
<th>Sigmoid Mean</th>
<th>SD</th>
<th>HR CTV Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>21.9</td>
<td>6.1</td>
<td>21.6</td>
<td>-2.7</td>
<td>22.8</td>
<td>-3.1</td>
<td>11.6</td>
</tr>
<tr>
<td>2</td>
<td>-0.1</td>
<td>14.7</td>
<td>0.6</td>
<td>17.4</td>
<td>1.8</td>
<td>24.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3.7</td>
<td>12.0</td>
<td>3.6</td>
<td>23.4</td>
<td>-</td>
<td>-</td>
<td>-1.1</td>
<td>9.0</td>
</tr>
<tr>
<td>4</td>
<td>6.4</td>
<td>24.7</td>
<td>8.6</td>
<td>24.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0.9</td>
<td>13.1</td>
<td>0.6</td>
<td>15.1</td>
<td>11.9</td>
<td>37.5</td>
<td>-0.9</td>
<td>19.4</td>
</tr>
<tr>
<td>6</td>
<td>2.1</td>
<td>24.3</td>
<td>5.2</td>
<td>26.0</td>
<td>2.3</td>
<td>21.3</td>
<td>1.6</td>
<td>10.4</td>
</tr>
<tr>
<td>total</td>
<td>3%</td>
<td>20%</td>
<td>5%</td>
<td>22%</td>
<td>2%</td>
<td>27%</td>
<td>-1%</td>
<td>13%</td>
</tr>
<tr>
<td>Intra-application</td>
<td>1%</td>
<td>18%</td>
<td>4%</td>
<td>21%</td>
<td>-2%</td>
<td>24%</td>
<td>-3%</td>
<td>11%</td>
</tr>
<tr>
<td>Inter-application</td>
<td>4%</td>
<td>22%</td>
<td>6%</td>
<td>23%</td>
<td>7%</td>
<td>30%</td>
<td>0%</td>
<td>15%</td>
</tr>
</tbody>
</table>

N.Nesvacil et al, Radiother Oncol 2013
Inter application variation of high dose region
Uncertainties of dose accumulation
Direct addition Vs Deformed addition
EMBRACE - International study on MRI-based 3D brachytherapy in locally advanced cervical cancer

A prospective observational multi-centre trial (> 1000 pts)

Vienna
Aarhus
Utrecht
Leiden
Ljubljana
London
Arnhem

Paris
Kaposvar
Maastricht
Trondheim
Leeds
Oslo
Amsterdam
Kuopio
Cambridge

(Europe)

(N.America)
Pittsburgh
Milwaukee
Edmonton
Iowa
BCU

(Asia)
Mumbai
Chandigarh
ChangMai
Application in OT

Applicators

Imaging

Contouring

Applicator reconstruction

Definition of dose points

planning

Plan evaluation

Dose delivery

CT/MR compatible IC+IS

CT / MR Contrast, B protocol

Target / OARs

Applicator commissioning

Point A, ICRU points

Std loading, MO, GrO, IP

GEC ESTRO DVH

2D BT

SS, IC, Fletcher

Orthogonal, Foley, R marker

X ray markers

Point A, ICRU points, 60Gy Vol

Std loading, m optimization

Dose to point A, OAR points

3D BT

Point A, ICRU points

Std loading, m optimization

Dose to point A, OAR points

Work flow
Thank You