MRI – based brachytherapy for cervical cancers

Dr Amy Chang
Associate Consultant
Pamela Youde Nethersole Eastern Hospital
Outline

• Introduce our service
• Why Image guided brachytherapy (IGBT)?
• IGBT results and case sharing
• Future directions
Introduction

- Pamela Youde Nethersole Eastern Hospital
- New cervical cancer case per year ~ 50
- Brachytherapy cervical cancer case (per patient) per year ~ 20-25
- HDR since 2005
- Image guided brachytherapy since 20 Jan 2015
 - New system upgrade in Sep 2014 (Oncentra TPS 4.3)
Applicators (MR compatible)

- Utrecht Interstitial CT/MR applicator (2 sets)
 - Plastic needles
- Vaginal CT/MR applicator (1 set)
- Vienna ring with interstitial needles (1 set)
 - Metal needles (not yet in use)
Why IGBT?
Problems in 2D

• Do we know the real geometry of the tumor?
• Do the point bladder and rectal dose points reflect the whole situation? Concern over normal organ toxicity
• Possible complication unknown for orthogonal films based
 – Uterine perforation
• Can we do better to improve disease outcome especially for more advanced stages/bulky tumors?
Potential benefits of image guidance (IGBT)

• 1. Verification of applicator position
• 2. Accurate delineation of OAR doses
• 3. Conformation of dose distribution
• 4. Dose escalation
• 5. Improve clinical outcome

Tan et al RCR guidelines 2008
1. Verification of applicator position

- Uterine perforation
2. Accurate delineation of OAR dose

Is ICRU accurate?

<table>
<thead>
<tr>
<th>Author</th>
<th>Bladder ICRU vs. D2cc</th>
<th>Rectal ICRU vs. D2cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wachter Gerstner et. al (2003)</td>
<td>ICRU underestimates dose (wrong balloon position)</td>
<td>ICRU overestimates (mean ratio 1.5)</td>
</tr>
<tr>
<td>Pelloski et. al (Red 2005)</td>
<td>ICRU underestimates dose (mean difference 6.8 Gy)</td>
<td>ICRU good estimate (mean 21cGy difference)</td>
</tr>
<tr>
<td>Yaparpalvi et. al (200)</td>
<td>Poor correlation</td>
<td>Strong correlation</td>
</tr>
</tbody>
</table>
3. Dose conformity – reduce dose to normal organs; improve tumor dose
4. Dose escalation can improve tumor control

- Dimopoulos et al. (Red 2009)
- 141 cervix cancer patients with chemoradiation
- HRCTV D90 > 87Gy resulted in much improved local control (LC 4% vs 20%)
Vienna series: MRI planning improved survival and local control in tumors > 5cm

Cancer Specific Survival

Local control

Potter et al R&O 2007
Favorable outcome with IGBT

<table>
<thead>
<tr>
<th>Location/Study</th>
<th>Local control</th>
<th>Survival</th>
<th>G3+ Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2D</td>
<td>3D</td>
<td>2D</td>
</tr>
<tr>
<td>Vienna (Potter et. al)</td>
<td>70%</td>
<td>95%</td>
<td>-</td>
</tr>
<tr>
<td>Denmark (Lindegaard et. al)</td>
<td>-</td>
<td>91% (3 yr)</td>
<td>63%</td>
</tr>
<tr>
<td>Addenbrooke (Tan et. al)</td>
<td>76%</td>
<td>96%</td>
<td>67%</td>
</tr>
<tr>
<td>France STIC trial (Charra-Brunaud et. al)</td>
<td>-</td>
<td>-</td>
<td>74%</td>
</tr>
</tbody>
</table>

P<0.05*
Guidelines for image guided brachytherapy

European GEC-ESTRO 2005-06

UK – RCR guidelines 2008

Implementing image-guided brachytherapy for cervix cancer in the UK
Our progress
Development needs collaborative efforts

- Oncologists
 - Within department
 - Radiation therapist
 - Physicist
 - Nurses
- Radiology (MRI)
- Anesthesiology (sedation method: spinal vs GA)
- Gynecology (guidance of applicator insertion)
Points to consider

- Imaging CT or MRI
- Dose/fractionation schedule
- Anesthesia (GA, spinal, sedation)
- Patient care (pain, inpatient)
Our Treatment schedule

WPI = whole pelvic irradiation
API = additional paramettrial irradiation
HDR = high dose rate brachytherapy

Week 5 MRI

Week 6 MRI

Week 7 MRI

Week 1-5

Week 6-7

Week 6 (fraction 1,2)
Week 7 (fraction 3,4)
Treatment schedule

- **Whole pelvic irradiation (WPI):** week 1-5 (45Gy)
- **Additional parametrial irradiation (API):** week 6-7 (10-16Gy; intercalate with HDR)
- **HDR brachytherapy:** week 6 (Day 1-2, 2 fractions); week 7 (Days 1-2, 2 fractions)
- **MRI arrangements:**
 - Week 5 (pre-planning before brachytherapy)
 - Week 6 (applierator in-situ)
 - Week 7 (applierator in-situ)
Week 5 pre-planning MRI is important

• Arrow images made by radiologist to delineate tumor, good reference for weeks 6 and 7
• Crucial information to plan for type of applicator (tube + ovoid vs. tube + tandem; size, angulation)
• Guide for interstitial needle insertion
Week 5 preplanning workflow

- Week 5 scan obtained
- Oncologist contour HRCTV
- Oncologist decides size of tube and ovoid for virtual planning
- Physicist uploads week 5 image with contour to Oncentra
- Create virtual applicator and isodose
- Review suboptimal dose coverage and decide needle position and depth
Workflow (Day 0)

- Admit patient one day before procedure (Day 0 - Monday)
- Anesthesiologist assessment
- HDR brachytherapy on Day 1 and 2 (Tues, Wed)
- Patient stay overnight after applicator insertion
Workflow (Day 1)

Applicator insertion at main theatre

To MRI scanning (radiology)

bladder control 30ml NS by ward nurse

To CT scanning (ONC)

crossed out: bladder control by ward nurse

Patient waits at day treatment centre (ONC)

Clinic nurse monitoring

Brachytherapy suite for treatment (ONC)

bladder control by clinic nurse
Equipments
Utrecht applicators
EUA
Gynecology and ultrasound assessment
Ultrasound assessment
Immobilization
Workflow Day 1 (treatment planning)

- MRI planning
- Contour targets and OAR
- Applicator reconstruction
- Dose optimization
- Review DVH, plan approval and prescription
Contouring (MRI)
Day 2

ward to CT simulator

Treatment planning

Patient waiting for day treatment center

Clinic nurse monitoring

To brachytherapy suite

Bladder volume control by clinic nurse

Remove applicator, discharge same day
Treatment planning Day 2
CT simulation, fuse with day 1 MRI
Contouring on CT
PYNEH experience – our initial results
Our patients

• First IGBT case on 20 Jan 2015
• 16 patients completed treatment
• 14 out of 16 patients (88%) completed all 4 fractions of HDR brachytherapy
 – One omitted fraction 4 for exceeding tolerance dose to normal organs
 – 2 omitted fraction 3 and 4 (replace with IMRT boosting) due to extensive disease (stage IIIB and IVA)
Tumor characteristics

FIGO staging

Histology

- adenocarcinoma: 69%
- squamous cell carcinoma: 19%
- others: 12%
Response to chemoradiation

Clinical response (average size)

- **Baseline**: 4.93 cm
- **Week 6**: 2.72 cm (-45%)
- **Week 7**: 2 cm (-26%)

MRI response (average 3 dimension volume)

- **Baseline**: 117 cm³
- **Week 5**: 31 cm³ (-74%)
- **Week 6**: 23 cm³ (-26%)
- **Week 7**: 20 cm³ (-14%)
Outcome

• 14 out of 16 patients (88%) are disease-free
 – Average HRCTV volume (per fraction) 29.6cm³
 – Average HRCTV D90 96.1Gy (range 84-113)
 – Exception: 2 patients received IMRT boosting for IVA and IIIB disease (66.6Gy total)

• 2 patients suffered from local and distant relapse

<table>
<thead>
<tr>
<th>Patient</th>
<th>FIGO stage</th>
<th>HRCTV volume</th>
<th>HRCTV D90 dose</th>
<th>Time of relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IIB</td>
<td>50cm³</td>
<td>63.3Gy</td>
<td>7 months post RT</td>
</tr>
<tr>
<td>2</td>
<td>IIIB</td>
<td>87cm³</td>
<td>58.5Gy</td>
<td>6 months post RT</td>
</tr>
</tbody>
</table>
Case 1 FIGO IIB with good response
Brachytherapy dose
<table>
<thead>
<tr>
<th></th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point A</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>HRCTV D90</td>
<td>10.5</td>
<td>10.6</td>
<td>9.2</td>
<td>9.2</td>
</tr>
</tbody>
</table>
Case 2 FIGO IIB good response

Baseline

Week 5
Week 5 pre-planning
Good 100% dose coverage
D90 HRCTV 8Gy
Brachytherapy dose
<table>
<thead>
<tr>
<th></th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point A</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>HRCTV D90</td>
<td>8.5</td>
<td>8.6</td>
<td>8.2</td>
<td>8.2</td>
</tr>
</tbody>
</table>
Case 3 - FIGO IIB poor response

Baseline

Week 5
Brachytherapy dose – week 6 (cylinder)
Case 4 FIGO IIB, dose optimization for OAR tolerance
Dose optimization to reduce dose to bladder and sigmoid
<table>
<thead>
<tr>
<th></th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>Total (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRCTV D90</td>
<td>9.4</td>
<td>9.2</td>
<td>11.1</td>
<td>11.2</td>
<td>113</td>
</tr>
<tr>
<td>Bladder</td>
<td>5.3</td>
<td>6.0</td>
<td>6.3</td>
<td>6.2</td>
<td>86</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>5.3</td>
<td>3.7</td>
<td>5.2</td>
<td>4.7</td>
<td>73</td>
</tr>
</tbody>
</table>
Case 5 FIGO IIB for interstitial needle insertion

Baseline

Week 5
Without needle

HRCTV D90 4.5Gy
With needle insertion

HRCTV D90 7.8Gy
Future directions

• Acquire skills for transrectal ultrasound-guided applicator and needle insertion
• Implement needle case with Vienna ring
• Develop post radiotherapy follow up protocol – serial MRI assessment and review need of biopsy
Thank you for the efforts!