Linking DVH-parameters to clinical outcome

Alina Sturdza, Richard Pötter, Medical University of Vienna, General Hospital of Vienna, Austria
Outline

• DVH parameters for HR CTV (D90) and OAR (2 ccm)

• Clinical endpoints: local failure, survival, morbidity

• Results: links between DVH parameters and outcome
 CTV D90 and local control
 OAR 2 ccm and morbidity

• Conclusions and limitations
Vienna experience

81 Gy vs. 90 Gy in HR CTV

Pötter R. et al Radiother Oncol 2007
Vienna 2001-2008: 156 patients

Mean D90: 93 Gy, 91 Gy for tumors >5 cm, 96 Gy 2-5 cm

Pötter & al., Radiother Oncol 100, 2011
CONTINUOUS COMPLETE REMISSION 3 YEARS*
VIENNA 1993-2003: 335 patients

<table>
<thead>
<tr>
<th>TREATMENT PERIOD</th>
<th>CCR 2-5cm (REC.)</th>
<th>CCR >5cm (REC.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-2003**</td>
<td>96% (1/34)</td>
<td>90% (3/34)</td>
</tr>
<tr>
<td>1998-2000**</td>
<td>96% (1/33)</td>
<td>71% (9/37)</td>
</tr>
<tr>
<td>1993-1997***</td>
<td>90% (5/65)</td>
<td>67% (27/124)</td>
</tr>
</tbody>
</table>

** Pötter et al. 2007 Radioth Oncol
*** Pötter et al. Cancer Radioth 2000
*Actuarial data (Kaplan Meier)
Linking DVH-parameters to clinical outcome

HR CTV/Tumour

Analysis (n=141, FIGO: IB-IVA, median follow-up=51 months)

D90 for the HR-CTV and probability of local control

D90 HR CTV 90 Gy EQD2
90% probability for local control

D90 HR CTV 70 Gy EQD2
65% probability for local control

Entire population (n=141)

Tumours > 5cm (n=76)
Better local control = improved survival

Aarhus Experience

Leiden Experience

Lindegaard, Acta Oncologica 2013

Rijkmans et al Gyn Oncol 2014
Overall treatment time (OTT)

- Increasing OTT by one week is equivalent to a loss of 5 Gy in CTV_{HR} D90

- Timing of the BT boost?

Tanderup & al., Radiother Oncol, 2016

Mazeron et al, Radiother Oncol, 2015
Clinical Evidence in IGABT Cervix Cancer

Upcoming Evidence

- Mono-institutional cohorts (ongoing, publicat. since 2007)
- Multi-center cohorts with retrospective evaluation
 RetroEMBRACE (2016)
- Prospective Trials
 STIC: comparative 2D vs. 3D (published 2012)
 EMBRACE I: observational, 08/2008 - 12/2015
 EMBRACE II: interventional, start 01/2016
• Web-based database with a retrospective multicentre collection of data on 3D RT plus IGABT in cervical cancer

• 731 pts

• Eligibility criteria:
 • Diagnosis of cervical cancer and treatment with curative intent by IGABT
 • Reporting according to GEC ESTRO recommendations
EMBRACE - International study on MRI-based 3D brachytherapy in locally advanced cervical cancer

- A prospective observational multi-centre trial
- Initiated enrollment of patients in 2008, >1200 pts accrued
- Finalised 12/2015
Results:

<table>
<thead>
<tr>
<th>Variable</th>
<th>No of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age (years)</td>
<td>53 (23 – 91) 731</td>
</tr>
<tr>
<td>FIGO Stage</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>2 (0.3 %)</td>
</tr>
<tr>
<td>1B</td>
<td>123 (16.8%)</td>
</tr>
<tr>
<td>2A</td>
<td>42 (5.7 %)</td>
</tr>
<tr>
<td>2B</td>
<td>368 (50.3 %)</td>
</tr>
<tr>
<td>3A</td>
<td>23 (3.1 %)</td>
</tr>
<tr>
<td>3B</td>
<td>145 (19.8 %)</td>
</tr>
<tr>
<td>4A</td>
<td>23 (3.1 %)</td>
</tr>
<tr>
<td>4B</td>
<td>5 (0.7 %)</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>Squamous cell Ca</td>
<td>620 (84.8 %)</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>71 (9.7 %)</td>
</tr>
<tr>
<td>Adenosquamous</td>
<td>29 (4 %)</td>
</tr>
<tr>
<td>Others</td>
<td>11 (1.5 %)</td>
</tr>
<tr>
<td>Median tumour width</td>
<td></td>
</tr>
<tr>
<td>Clinically: 50 mm</td>
<td>MRT @ diagnosis: 47 mm</td>
</tr>
<tr>
<td>Nodal status</td>
<td></td>
</tr>
<tr>
<td>N+</td>
<td>296 (40%)</td>
</tr>
<tr>
<td>N-</td>
<td>436 (60%)</td>
</tr>
<tr>
<td>CHT</td>
<td></td>
</tr>
<tr>
<td>Yes: 566 (76.5 %)</td>
<td>No: 165 (22.5 %)</td>
</tr>
<tr>
<td>Median FU</td>
<td>47 months</td>
</tr>
</tbody>
</table>

Sturdza & al., Radiother Oncol, 2016
RetroEMBRACE: Local, Pelvic, Distant Control, Cancer Specific Survival, Overall Survival

Pattern of Relapse

Sturdza & al., Radiother Oncol, 2016
Local control and FIGO stage (RetroEMBRACE)

Loc failure (Retro 3-5y):
- IB: 2%
- IIB: 7-9%
- IIIB: 21-25%
- IVA: 24%

RetroEMBRACE 3y:
- IB: 98%*
- IIB: 93%
- IIIB: 79%

*2 events in IB2

Loc failure (Vienna 3y):
- IB: 0%
- IIB: 4%
- IIIB: 14%
- IVA: 24%

Loc failure (Vienna 3y):
- IB: 100%
- IIB: 96%
- IIIB: 86%

Sturdza et al. 2016
Heterogeneity of dose prescription: HRCTV D90 (EMBRACE)
Heterogeneity of dose prescription: Bladder D2cc (EMBRACE)

Mean Values
Local outcome for adaptive CTV_{HR} volume and dose per stage (RetroEMBRACE)

- **Stage I**
- **Stage II**
- **Stage III+IV**
Local outcome for adaptive CTV$_{HR}$ volume and dose (EMBRACE)

Predicted local control based on RetroEMBRACE outcome

769 pts EMBRACE

- 96% predicted local control
- 92% predicted local control
- 95% predicted local control
- 90% predicted local control
- 82% predicted local control
- 92% predicted local control
Actuarial local control for adaptive CTV$_{HR}$ volume and dose

CTV$_{HR}$ volume

CTV$_{HR}$ dose

Tanderup et al, Radiation Oncol, 2016
Effect of dose, volume and time:

Dose: 10Gy → ~ 5% LC
Time: 7 days ~ 5Gy
Volume: 10cm³ ~ 5Gy

- Cox regression
- Dose and volume continuous co-variates
- Significance:
 - p=0.07 for CTV_{HR} D90
 - p=0.01 for CTV_{HR} volume
- Hazard ratios:
 - 0.962 for CTV_{HR} D90 (per Gy)
 - 1.018 for CTV_{HR} volume (per cm³)

Local control at 3 years

Tanderup et al, Radiation Oncol, 2016
Actuarial local outcome for residual GTV
Dose volume response (res GTV D 100)

163pts: >85Gy
104pts: <85Gy

Local control and res GTV dose (D100)
LOCAL CONTROL - CLINICAL DATA/AIMS

DOSE at POINT A vs. as D90 IN IMAGE GUIDED ADAPTIVE BT

<table>
<thead>
<tr>
<th>EARLY DISEASE</th>
<th>DOSE Pt A / D90 HR</th>
<th>BEST STANDARDS*</th>
<th>AIM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75 Gy / 85-95+</td>
<td>90-95%</td>
<td>~100%</td>
</tr>
</tbody>
</table>

Expected Improvement through Image Guided Adaptative BT
- Local control by 5-40%; overall survival by ~10%

IIIB<5cm	80 Gy / 85-90 Gy	70-85%	95-100%
IIIB/IIIB>5cm	85 Gy / 90+ Gy	50-65%	85-90%

* Including a gain through chemoradiation of 5-10%
Pelvic control and FIGO stage

Pattern of Relapse 5 years

RetroEMBRACE 3y: overall 87%
Vienna (2011) 3y: overall 91%

RetroEMBRACE Outcome Sturdza et al. 2016
296/731 N+ at diagnosis

63/731

Pattern of Nodal Relapse

Nodal boost through IMRT/VMAT may result in improved nodal control
Systemic (distant) recurrence analysis
(EMBRACE data, 133 events in 753 patients)

Fortin et al. ASTRO 2015
Provisional comparison
DVH parameters & local control
based on multi-centre experience

<table>
<thead>
<tr>
<th>Study</th>
<th>HR CTV</th>
<th>Bladder</th>
<th>Rectum</th>
<th>Sigmoid</th>
<th>2y Local Control</th>
<th>2y G3-G4 BL+GI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D90 (Gy)</td>
<td>D2cc (Gy)</td>
<td>D2cc (Gy)</td>
<td>D2cc (Gy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIC 3</td>
<td>73</td>
<td>70</td>
<td>61</td>
<td>58</td>
<td>79% (74)</td>
<td>1% (14)</td>
</tr>
<tr>
<td>Def EBRT+BT</td>
<td>n=201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMBRACE</td>
<td>89</td>
<td>76</td>
<td>64</td>
<td>62</td>
<td>>90%</td>
<td>?</td>
</tr>
<tr>
<td>n=850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retro</td>
<td>89</td>
<td>79</td>
<td>65</td>
<td>65</td>
<td>>91%</td>
<td>~10%</td>
</tr>
<tr>
<td>EMBRACE</td>
<td>n=698</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interpretation of RetroEMBRACE results (IGABT compared to large population based cohorts 2D BT)

<table>
<thead>
<tr>
<th>Pelvic failure (crude)</th>
<th>Concomitant chemo</th>
<th>IB</th>
<th>IIB</th>
<th>IIIB</th>
<th>Total</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>retroEMBRACE (n=731)</td>
<td>77%</td>
<td>4%</td>
<td>11%</td>
<td>25%</td>
<td>13%</td>
<td>Δ 8-9%</td>
</tr>
<tr>
<td>Perez 1998</td>
<td>0%</td>
<td>12%</td>
<td>21%</td>
<td>41%</td>
<td>23%</td>
<td>Δ 10-13%</td>
</tr>
<tr>
<td>Barillot 1997</td>
<td>0%</td>
<td>13%</td>
<td>24%</td>
<td>49%</td>
<td>13%</td>
<td>Δ 16-24%</td>
</tr>
<tr>
<td>Improvement</td>
<td></td>
<td>Δ8-9%</td>
<td>Δ10-13%</td>
<td>Δ16-24%</td>
<td>Δ10%</td>
<td></td>
</tr>
</tbody>
</table>

Overall Survival

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No of pts</td>
<td>394</td>
<td>471</td>
<td>3246</td>
<td>2571</td>
</tr>
<tr>
<td>5y OS</td>
<td>67%</td>
<td>55%</td>
<td>55%</td>
<td>54%</td>
</tr>
<tr>
<td>Improvement</td>
<td>Reference</td>
<td>Δ12%</td>
<td>Δ12%</td>
<td>Δ13%</td>
</tr>
</tbody>
</table>
BENEFIT FROM CONCOMITANT RADIOCHEMOTHERAPY

<table>
<thead>
<tr>
<th>Author</th>
<th>Randomisation Arms</th>
<th>Stage</th>
<th>Locoregional Recurrence</th>
<th>3 Year Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keys et al</td>
<td>RT + Cisplatin + HE</td>
<td>Bulky IB</td>
<td>9%</td>
<td>83%</td>
</tr>
<tr>
<td>N Engl J Med. 1999</td>
<td>RT + HE</td>
<td></td>
<td>21%</td>
<td>74% (p=0.008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.51 (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Whitney et al</td>
<td>RT + Cis/5-FU</td>
<td>IIB, III, IVA</td>
<td>24.9%</td>
<td>67%</td>
</tr>
<tr>
<td>J Clin Oncol. 1999</td>
<td>RT + HU</td>
<td></td>
<td>30.4%</td>
<td>57% (p=0.018)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.79 (90% CI)</td>
<td></td>
</tr>
<tr>
<td>Rose et al</td>
<td>RT + Cisplatin</td>
<td>IIB, III, IVA</td>
<td>Not reported</td>
<td>65%</td>
</tr>
<tr>
<td>N Engl J Med. 1999</td>
<td>RT + Cis/5-FU+HU</td>
<td></td>
<td></td>
<td>65%</td>
</tr>
<tr>
<td></td>
<td>RT + HU</td>
<td></td>
<td></td>
<td>47% (p=0.004)</td>
</tr>
<tr>
<td>Morris et al</td>
<td>RT + Cis/5-FU</td>
<td>IB-IVA</td>
<td>19%</td>
<td>75%</td>
</tr>
<tr>
<td>N Engl J Med. 1999</td>
<td>RT (pelvis + paraaortal)</td>
<td>(~70% IB-IIB in each group)</td>
<td>35%</td>
<td>63% (p=0.004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.47 (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Peters et al</td>
<td>HE + RT + Cis/5-FU</td>
<td>IA2, IIB, IIA</td>
<td>5.5%</td>
<td>81%</td>
</tr>
<tr>
<td>J Clin Oncol. 2000</td>
<td>HE + RT</td>
<td></td>
<td>17%</td>
<td>71% (p=0.007)</td>
</tr>
<tr>
<td>Pearcey et al</td>
<td>RT+Cisplatin</td>
<td>IB-IVA</td>
<td>Not reported</td>
<td>69%</td>
</tr>
<tr>
<td>J Clin Oncol. 2002</td>
<td>RT</td>
<td></td>
<td></td>
<td>66% (p=0.42)</td>
</tr>
</tbody>
</table>
Overall Survival locally advanced cervical cancer: the impact of brachytherapy

Total 25% increase in Overall Survival from „no brachy“ (Han) to „4D brachy“ (RetroEMBRACE)

Han et al Int J Radiation Oncol Biol Phys 2013;87:111-119
Sturdza et al. Improved local control and survival in LACC through image guided adaptive brachytherapy, submitted
Planning aims and Dose prescription (I)
CTV-T EMBRACE II protocol (EBRT+BT) (1/2016)

<table>
<thead>
<tr>
<th>Planning Aims</th>
<th>D90 CTV_{HR} EQD2₁₀</th>
<th>D98 CTV_{HR} EQD2₁₀</th>
<th>D98 GTV EQD2₁₀</th>
<th>D98 CTV_{IR} EQD2₁₀</th>
<th>D Point A EQD2₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Aims</td>
<td>> 90 Gy < 95 Gy</td>
<td>> 75 Gy</td>
<td>>95 Gy</td>
<td>> 60 Gy</td>
<td>> 65 Gy</td>
</tr>
<tr>
<td>Limits for Prescribed Dose</td>
<td>> 85 Gy</td>
<td>-</td>
<td>>90 Gy</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3D-based Dose Volume Parameters for OAR

CLASSICAL MAX DOSE: in 3D
no clinical relevant endpoint

FIXED VOLUME: tolerance dose (total dose)-
“minimum dose to the most exposed tissue”*

*GYN GEC ESTRO Recommendations(II)
Radiother Oncol 2006

1 cc/2 cc: teleangiecstasia
(20 mm x 20 mm x 5 mm)

0.1 cc: 3D “maximum dose“:
ulceration (fistula)
Bladder D2cc (EMBRACE)

- EMBRACE CTCAE
- All endpoints except ureter stenosis G≥2

![Graph showing bladder morbidity](image)

- ≥80 Gy: 30-40%
- <80 Gy: 15-30%

QOL (EORTC)

- ≥18 months follow up

Fokdal et al 2015
Linking DVH-parameters to outcome
Bladder - evaluation

for 34 patients with D 2 ccm > 90 Gy

<table>
<thead>
<tr>
<th>Bladder wall(bw)</th>
<th>Position</th>
<th>P = 0.006</th>
<th>Low</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bw</td>
<td>bw</td>
<td></td>
</tr>
<tr>
<td>With Side effect</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Side effect</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arie et al./Berger et al., Vienna 2008/10

Weak overall dose volume effect for all patients, e.g. 2 ccm
(Georg et al. 2010, in press)

<table>
<thead>
<tr>
<th>Bladder</th>
<th>D2cc</th>
<th>≤100 Gy</th>
<th>>100 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-G4</td>
<td>13% (12/94)</td>
<td>17% (8/47)</td>
<td></td>
</tr>
</tbody>
</table>
$D_{2cc} = 81 \text{ Gy EQD}_2$

$D_{1cc} = 90 \text{ Gy EQD}_2$

$D_{0.1cc} = 108 \text{ Gy EQD}_2$

Georg et al. IJROBP 2011
Rectum D_{2cm^3}

R Mazeron, IGR Paris
\geqG2 rectal bleeding

Georg et al 2011, 141 pts
\geqG2 (mainly rectal bleeding)

![Graph showing the relationship between D_{2cc} and late side effects in the rectum.](image)

Fig. 1. Relationship between D_{2cc} and late side effects in the rectum.
Vaginal dose assessment and reporting

UNCERTAINTIES IN ASSESSMENT OF THE VAGINAL DOSE FOR INTRACAVITARY BRACHYTHERAPY OF CERVICAL CANCER USING A TANDEM-RING APPLICATOR

DVH parameters have HIGH uncertainty for representative vaginal dose estimation

They are influenced by the resolution of sectional imaging, contouring accuracy and applicator reconstruction

Berger et al, IJROBP 2007
Vaginal morbidity and radiation doses

ICRU/GEC ESTRO Report 88 under publication Fig. 6.1/Fig. 8.11

(Westerveld et al. Vienna 2013)
DVH Parameters and Reference Points, variations in application

ICRU/GEC ESTRO report 88
Fig. 6.4, Fig. 8.8
Vaginal stenosis (EMBRACE)
ICRU recto-vaginal point (630 pts)

Cox-regression, 2 year actuarial risk of ≥G2 stenosis
- Significant impact of EBRT dose (45Gy versus 50Gy)
- Significant impact of BT ICRU recto-vaginal dose

Prevalence vaginal stenosis

Kirchheiner K et al. Manifestation pattern of early-late vaginal morbidity. IJROBP 2014 May 1;89(1):88-95

Kirchheiner et al, 2016, Radiation Oncol
Sigmoid D2cc, preliminary data (EMBRACE)

- No dose effect established – so far

Diarrhea

<table>
<thead>
<tr>
<th>Sigmoid D2cc</th>
<th><58Gy</th>
<th>58-63Gy</th>
<th>63-68Gy</th>
<th>>68Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>not at all</td>
<td>55%</td>
<td>55%</td>
<td>58%</td>
<td>61%</td>
</tr>
<tr>
<td>a little</td>
<td>35%</td>
<td>35%</td>
<td>37%</td>
<td>39%</td>
</tr>
<tr>
<td>quite a bit</td>
<td>17%</td>
<td>18%</td>
<td>17%</td>
<td>17%</td>
</tr>
<tr>
<td>very much</td>
<td>9%</td>
<td>13%</td>
<td>14%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Maximum from 12 months on diarrhea
Bowel D2cc, preliminary data (EMBRACE)

- No dose effect established – so far

Bowel control

Diarrhea

maximum from 12 months on difficulties in bowel control
- not at all
- a little
- quite a bit
- very much

maximum from 12 months on diarrhea
- not at all
- a little
- quite a bit
- very much

Prozenten

Bowel D2cc

<57Gy 57-64Gy 64-70Gy >70Gy

<57Gy 57-64Gy 64-70Gy >70Gy
Dose Volume Effect for sigmoid for 2 ccm (?)

In addition: No clear correlation in endoscopy study (2007)

Topographical interfractional changes

Sigma
N=141

Mean VS
Common observation

Sturdza et al. Boston 2008
Uncertainties in assessing sigmoid DVH parameters
Assessment of sigmoid topography changes between HDR-brachytherapy fractions
“Is the worst case assumption valid for the sigmoid colon?”

Results

23/44 common observations between observers

- Easy to find or obvious change (score=3-4) in sigmoid topography between fractions in 15/22 (68%) significant movement

- Difficult to find or no change (score=1-2) in remaining little or no movement

Sturdza et al. Boston 2008
Planning aims and Dose prescription (II) OAR

EMBRACE II protocol (EBRT+BT) (1/2016)

<table>
<thead>
<tr>
<th></th>
<th>Bladder $D_{2\text{cm}^3}$ EQD2$_3$</th>
<th>Rectum $D_{2\text{cm}^3}$ EQD2$_3$</th>
<th>Recto-vaginal point EQD2$_3$</th>
<th>Sigmoid/Bowel $D_{2\text{cm}^3}$ EQD2$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Aims</td>
<td>< 80 Gy</td>
<td>< 65 Gy</td>
<td>< 65 Gy</td>
<td>< 70 Gy*</td>
</tr>
<tr>
<td>Limits for Prescribed Dose</td>
<td>< 90 Gy</td>
<td>< 75 Gy</td>
<td>< 75 Gy</td>
<td>< 75 Gy*</td>
</tr>
</tbody>
</table>

* for the sigmoid/bowel structures these dose constraints are valid in case of non-mobile bowel loops resulting in the situation that the most exposed volume is located at a similar part of the organ.
Conclusion (I)

- **Dose effect demonstrated for:**
 - Residual GTV D100, adaptive CTV_{HR} D90, and CTV_{IR} D90
 - Bladder D 2cm^3
 - Rectum D 2cm^3
 - Vagina (recto-vaginal point)

- **Dose effect not demonstrated for**
 - Sigmoid and bowel

Perspective: prospective dose prescription protocol taking into account multiple parameters:
- Target dose, volume and overall treatment time
- OARs
CONCLUSIONS AND LIMITATIONS (IGABT)

Linking DVH parameters to clinical outcome

- D90 HR CTV, GTV 100 and local control: strong link
- 2/0.1 ccm for rectal morbidity: strong link
- 2 ccm for bladder morbidity: link
 improvement by location assessment? (bladder point)
- 2 ccm for sigmoid/ bowel morbidity: weak link
 improvement by movement assessment?
- *Any DVH parameter for vaginal morbidity: no link so far*
- ICRU rectovaginal Point: strong link

Limitations: prospective study data only upcoming multicenter study: RetroEMBRACE/EMBRACE
Local control – advanced treatment adaptation including interstitial brachytherapy (RetroEMBRACE)

<table>
<thead>
<tr>
<th>Width in MRI at diagnosis</th>
<th>Local control at 5 year (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limited adaptation</td>
<td>Advanced adaptation</td>
</tr>
<tr>
<td>Tumor <5cm</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Tumor ≥5cm</td>
<td>77%</td>
<td>86%</td>
</tr>
</tbody>
</table>

The use of advanced adaptation including interstitial BT improves local control in large tumors

Fokdal et al. and Fortin et 2016
In big tumors (>5cm), **262 patients**, there is a trend for better local control in advanced adaption group, difference in actuarial 3y LC 6%, in 5y 9%
Conclusion (II)

- Dose and volume adaptation for tumor related parameters achievable:

 combined intracavitary/interstitial techniques

 in large tumors (adaptive CTV_{HR} >30 ccm)

- Dose and volume adaptation in case of unfavourable topography of CTV_{HR} and/or GTV_{res} in relation to OARs achievable:

 combined intracavitary/interstitial techniques

 in tumors of any size with very close OARs

- Perspective: systematic use of advanced intracavitary/interstitial techniques in cervix cancer BT
EMBRACE II Planning AIMS and Limits for Prescription

<table>
<thead>
<tr>
<th>OTT < 50 Days</th>
<th>D90 CTV<sub>HR</sub> EQD<sub>210</sub></th>
</tr>
</thead>
</table>
| **Planning Aims** | > 90 Gy
< 95 Gy |
| **Limits for Prescribed Dose** | > 85 Gy |

<table>
<thead>
<tr>
<th>OAR</th>
<th>Bladder D<sub>2cm³</sub> EQD<sub>2</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Aims</td>
<td>< 80 Gy</td>
</tr>
<tr>
<td>Limits for Prescribed Dose</td>
<td>< 90 Gy</td>
</tr>
</tbody>
</table>

![Graph showing dose distribution and escalation](image)
EMBRACE II
Start 1/2016

MRI guided adaptive brachytherapy (IGABT)

Residual Gross Tumor D98 >>95Gy
High Risk Target D90 >90Gy
Intermediate Risk Target > 60Gy

Sigmoid D2cc= 61Gy (< 70Gy)
Rectum D2cc= 64Gy (< 65Gy)
Bladder D2cc= 76Gy (< 80Gy)

Residual GTV-T, Adaptive HR CTV-T, IR CTV-T